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ABSTRACT

Spinal cord injuries (SCIs) result in devastating lifelong disability for patients and their families. The initial
mechanical trauma is followedby adamaging secondary injury cascade involvingproapoptotic signaling,
ischemia, and inflammatory cell infiltration.Ongoing cellular necrosis releasesATP,DNA, glutamate, and
free radicals to create a cytotoxicpostinjurymilieu. Long-term regenerationof lost or injurednetworks is
further impeded by cystic cavitation and the formation of an inhibitory glial-chondroitin sulfate proteo-
glycanscar. In thisarticle,wediscuss importantneuroprotective interventionscurrentlyapplied inclinical
practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone.
We then explore exciting translational therapies on the horizon, such as riluzole, minocycline, fibroblast
growth factor, magnesium, and hypothermia. Finally, we summarize the key neuroregenerative strate-
gies of the next decade, including glial scar degradation, Rho-ROCK inhibition, cell-based therapies, and
novel bioengineered adjuncts. Throughout, we emphasize the need for combinatorial approaches to
this multifactorial problem and discuss relevant studies at the forefront of translation. We conclude
by providing our perspectives on the future direction of SCI research. STEM CELLS TRANSLATIONAL

MEDICINE 2016;5:1–11

SIGNIFICANCE

Spinal cord injuries (SCIs) result in devastating, lifelongdisability for patients and their families. This article
discusses important neuroprotective interventions currently applied in clinical practice, including surgical
decompression, blood pressure augmentation, and i.v. methylprednisolone. Translational therapies on
the horizon are discussed, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypo-
thermia. The key neuroregenerative strategies of the next decade are summarized, including glial scar
degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. The need
for combinatorial approaches to this multifactorial problem is emphasized, relevant studies at the fore-
front of translation are discussed, and perspectives on the future direction of SCI research are presented.

INTRODUCTION

The Acute Injury and Postinjury Milieu

Traumatic spinal cord injuries affect 1.4 million
North Americans, a disproportionate number
of whom are younger than 30 years. Direct life-
time costs are staggering, at $1.1 to $4.6 million
per patient [1, 2]. The initial mechanical insult is
followed by a secondary injury cascade that
generates further permanent damage. Promising
neuroprotective strategies tomitigate the second-
ary injury, and neuroregenerative approaches to
restore function, are discussed herein.

Acute cell dysfunction and death occur via
cell permeabilization and initiation of proapoptotic
signaling cascades and because of ischemia due to
destruction of the sensitive microvascular supply

[3, 4]. Furthermore, disruption of the blood-spinal
cordbarrier exposes the cord to inflammatory cells,
cytokines, andvasoactivepeptides [5, 6]. In the sub-
sequenthours,hemorrhageandprogressiveedema
cyclically add to the harsh postinjury milieu. Ongo-
ing cellular necrosis releases ATP, DNA, and K+,
whichactivatemicroglia tosecreteproinflammatory
cytokines. As a result, dramatic numbers of mac-
rophages, microglia, and polymorphonuclear
leukocytes infiltrate the injury site [7]. Engaged
phagocytes generate reactive free radicals and
cytotoxic by-products that further contribute
to cell death. Moreover, release of glutamate
via neurons and reuptake failure by astrocytes
lead to excitotoxic injury in nearby neurons
[8, 9]. At a systemic level, loss of CNS-mediated
sympathetic vascular tone results in profound
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hypotension. Furthermore, impaired local autoregulation makes
the cord particularly susceptible to ongoing postinjury ischemia
[10,11] (Fig.1).Eachstep inthis injurycascade isan importanttarget
for combinatorial neuroprotective strategies.

Barriers to Recovery

Regeneration after spinal cord injury (SCI) requires targeted axon
growth and remyelination of long tracts. Loss of the cord’s struc-
tural framework, including cystic cavitation, impairs directed
axonal regrowth and free cell migration [12]. In addition to archi-
tectural disruption, uncontrolled reactive astrogliosis generates
inhibitory glial scarring by creating a physical barrier of irregular
mesh-like astrocytic processes in theperilesional zone [13]. Extra-
cellularmatrix in the glial scar is predominantly composed of chon-
droitin sulfate proteoglycans (CSPGs) [14, 15], tenascin [16, 17],
and neural/glial antigen 2 (NG2) proteoglycans [18, 19], which fur-
ther restrict axonal regeneration and inhibit neurite outgrowth
through membrane tyrosine phosphatase, PTPs [20, 21]. Further-
more, existing myelin- and neuron-related signals neurite out-
growth inhibitor (NOGO) [22], oligodendrocyte myelin glycoprotein,
semaphorin3A, semaphorin4D [23], andmyelin-associatedglycopro-
tein [24] bind to NOGO receptor (NgR) (or neuropilin-1/plexin-A1 for
semaphorin 3A) to activate RhoGTPase and its downstreameffector,
Rho-associated protein kinase (ROCK) [21]. Together, these result in
growth cone collapse and potent inhibition of regeneration [20].

In addition to reforming neural circuits, myelination is an im-
portant component of regeneration. Demyelination of axons by
oligodendroglial apoptosis along with minimal oligodendrocyte
precursor cell (OPC) proliferation after injury contribute to poor
functional recovery. Denuded axons lose rapid saltatory conduc-
tion and are particularly vulnerable to nonfunctional electrogen-
esis [25, 26]. Preserving and regenerating functional, myelinated
circuits is key to SCI recovery.

Neuroprotection

Sodium Channel Blockade

Riluzole is a U.S. Food and Drug Administration (FDA)-approved
benzothiazole antiepileptic used in amyotrophic lateral sclerosis
(ALS) [27]. Riluzole selectively blocks tetrodotoxin-sodium chan-
nels associatedwith injured neurons (Table 1). It also inhibits pre-
synaptic glutamate release and increases reuptake to potentially
mitigate excitotoxicity [28]. Its approval by regulatory bodies and
its demonstrated safety in ALS make it a particularly appealing
drug for translation in SCI. In preclinical studies, treatment with
riluzole has resulted in dramatic sensorimotor improvements
functionally and electrophysiologically [29, 30]. A consortium
(led by senior author M.F. and including AOSpine, the North
American Clinical Trials Network, the Rick Hansen Institute, and
the Ontario Neurotrauma Foundation) is conducting a phase
II/III randomized controlled trial (NCT01597518) entitled “Riluzole
in Spinal Cord Injury Study” (RISCIS) to assess the effects of riluzole
using the American Spinal Injury Association (ASIA) Impairment
Scale (AIS), Spinal Cord Independence Measure, and brief pain in-
ventory outcomes [31]. The trial is recruiting patients with C4–C8
level injuries and is expected to conclude in December 2018.

Anti-Inflammatory Drugs

Minocycline is a CNS-penetrating tetracycline antibiotic that in-
hibits microglial activation and downregulates proinflammatory

cyclooxygenase-2, tumor necrosis factor-a (TNF-a), and interleukin-1b
(IL-1b). Preclinical studies of acute minocycline treatment
showed decreased inflammatory cell infiltration, reduced cystic
cavitation, and improved behavioral outcomes [32]. A phase
II randomized controlled trial (RCT) (n = 52) examining the ef-
fects of 7 days of i.v. minocycline versus placebo demonstrated
safety, stable cerebrospinal fluid (CSF) drug levels, and a trend
toward improvedmotor scores [33]. These exciting results have
led to the phase III Minocycline in Acute Spinal Cord Injury trial
(NCT01828203) in which 7 days of i.v. minocycline is compared
with placebo in 248 patients. Completion of the trial is expected
in 2018 [34].

Methylprednisolone (MPSS) is a synthetic glucocorticoid that
acts on cytoplasmic receptors to upregulate anti-inflammatory
factors and interfere with the actions of proinflammatory cyto-
kines, arachidonic acidmetabolites, and adhesion proteins. In an-
imal models, MPSS has also been shown to mitigate oxidative
stress and enhance oligodendrocyte andmotor neuron survival
[35]. A series of clinical trials and meta-analyses over the last 3
decades have collectively demonstrated improvements in mo-
tor scores for patients administered i.v. MPSS within 8 hours of
injury [36–38]. Providing MPSS to this subset of patients will be
recommended in the upcoming 2016 AOSpine guidelines, de-
veloped by an international and interdisciplinary committee
of expert physicians, allied health workers, patients, and inde-
pendent consultants applying the rigorous Grading of Recom-
mendations Assessment, Development and Evaluation (GRADE)
tool [39–44].

Therapeutic Hypothermia

Therapeutic hypothermia has been successfully used for neuro-
protection in patients after resuscitated cardiac arrest [45] and
neonatal hypoxic-ischemia encephalopathy [46]. Hypothermia
significantly decreases the basal metabolic rate of the CNS
and diminishes the systemic inflammatory response [47]. In
SCI, pilot studies of systemic hypothermia have demonstrated
that it may show promise as a neuroprotective intervention
[48]. The Acute Rapid Cooling Therapy for Injuries of the Spinal
Cord (ARCTIC) phase II/III trial, which aims to evaluate the
safety and efficacy of cooling within 6 hours of injury, is pend-
ing approval [49].

Surgical Decompression

After injury, progressive edema and hemorrhage generate me-
chanical pressure on the confined spinal cord. Surgical decom-
pression relieves this pressure to mitigate further secondary
injury. The Surgical Timing in Acute Spinal Cord Injury (STASCIS)
trial, published in 2012, was a prospective observational study
of 222 patients undergoing early (,24 hours) versus late (.24
hours) decompression. Patients receiving early surgical interven-
tion were twice as likely to improve by 2 or more AIS grades at
6 months [50]. A prospective Canadian cohort study similarly
demonstrated that a significantly greater proportion of patients
who underwent early decompression improved by two or more
AIS grades [51]. Furthermore, Dvorak et al. reported shorter
lengths of hospital stay after early decompression for patients
with ASIA A (complete) or ASIA B (complete motor; incomplete
sensory) injuries [52]. Early decompression in acute SCI is now a
widely adopted practice that we strongly advocate.
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Other Neuroprotective Strategies

Numerous other neuroprotective approaches have been translated
into recently concludedorongoingclinical trials.Granulocyte colony-
stimulating factor (G-CSF) is a signaling glycoprotein that has been
shown to enhance the survival of ischemic CNS cells, protect
against glutamate-induced apoptosis, and reduce TNF-a and

IL-1bexpression invivo[53,54].Twophase I/IIanonrandomizedtrials
have demonstrated improved AIS scores after G-CSF administration,

without significant adverse events [55, 56]. A phase III RCT of i.v.

G-CSF, theG-CSF-MediatedSpinalCordInjuryRecovery InductionTrial

(G-SPIRIT;n=88) is recruitingpatientswithacute cervical SCI in Japan.

The study began in May 2015 and is expected to conclude in 2018.

Figure 1. Pathophysiology of spinal cord injury in the acute, subacute, and chronic setting. Acute traumatic injury causes cell death through
ischemia, release of cytotoxic molecules, initiation of apoptotic cascades, hemorrhage, edema, and infiltration of inflammatory cells. In the
subacute phase, cystic cavities begin to coalesce and become surrounded by reactive astrocytes, fibroblasts, and inflammatory cells. Inhibitory
proteoglycans are secreted into the extracellular matrix. Degeneration/dieback of damaged and denuded axons occurs. In the intermediate/
chronic phase, encompassing most patients, mechanical and chemotactic barriers restrict axon regeneration. Limited remyelination by
oligodendrocytes and Schwann cells may portend small functional gains during this period.
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Vascular compression, intraluminal thrombosis, loss of autore-
gulation, and system hypotension contribute to ongoing post-
injury cord ischemia. Trials of blood pressure augmentation to
reduce ischemia have demonstrated improved ASIA grade out-
comes for patients with mean arterial pressures (MAPs) held

above 85–90 mm Hg [57]. The American Association of Neuro-
logical Surgeons and Congress of Neurological Surgeons pro-
vide level III recommendations to maintain MAP for 7 days
after injury [58]. Building on this, the Canadian Multicentre
CSF Monitoring and Biomarker Study (CAMPER; NCT01279811) is

Table 1. Current neuroprotective strategies for spinal cord injury

Treatment Mechanism of action Relevant trial (n; Year) Key findings

In current practice

Surgical decompression Reduces mechanical pressure
on the confined cord to
mitigate ischemia and
pressure-related cell death

STASCIS (n = 313; 2012) Patients undergoing early
surgery (,24 hours) were
twice as likely as those who
underwent late surgery (.24
hours) s to improve their AIS
motor scores by 2 or more at
6-month follow-up

MPSS Upregulates
anti-inflammatory factors and
interferes with the actions of
proinflammatory cytokines,
arachidonic acid metabolites,
and adhesion proteins

NASCIS II (n = 487; 1990) No difference in overall
analysis. Post hoc analysis
demonstrated improved AIS
scores for patients given
MPSS within 8 hours of injury

NASCIS III (n = 499; 1997) No difference in overall
analysis. Post hoc analysis
demonstrated improved AIS
scores for patients given 48
hours MPSS regimen within
3–8 hours of injury

MAP $ 85 mm Hg Decreases cord ischemia by
increasing perfusion pressure

MAPS (n = 100a; 2017b) N/A

In phase III trial

Minocycline Inhibits microglial activation
and downregulates COX-2,
TNF-a, and IL-1b

MASC (n = 248a; 2018b) N/A

Riluzole Sodium-channel blocker,
indirectly inhibits presynaptic
glutamate release and
potentiates reuptake

RISCIS (n = 351a; 2017b) N/A

G-CSF Reduces glutamate-induced
apoptosis and TNF-a/IL-1b
expression

G-SPIRIT (n = 8a; 2018b) N/A

In phase II trial

VX-210 (Cethrin) Inactivation of the ROCK
pathway

Cethrin in Acute Cervical
Spinal Cord Injury (2016b)

N/A

Mg-PEG 3350 Antiexcitotoxic and
antiapoptotic
NMDA-receptor antagonism

A Study of AC105 in Patients
With Acute Traumatic Spinal
Cord Injury (n = 16; 2015)

Trial discontinued

bFGF/FGF2 Decreases oxyradical
generation and excitotoxic
cell death; promotes
angiogenesis

Study to Evaluate the Efficacy,
Safety, and Pharmacokinetics
of SUN13837 Injection in
Adult Subjects With Acute
Spinal Cord Injury (ASCI)
(n = 62; 2015)

Trial discontinued

In phase I trial/pilot studies

Therapeutic hypothermia
(32°C–34°C)

Decreases basal metabolic
rate and inflammatory
response

ARCTIC (pending approval) N/A

aProjected enrollment per https://clinicaltrials.gov.
bProject study completion date.
Abbreviations: AIS, American Spinal Injury Association Impairment Scale; ARCTIC, Acute Rapid Cooling Therapy for Injuries of the Spinal Cord; bFGF,
basic fibroblast growth factor; COX, cyclooxygenase; FGF2, fibroblast growth factor 2; G-CSF, granulocyte colony-stimulating factor; G-SPIRIT, G-CSF
mediated spinal cord injury recovery induction trial; IL, interleukin; MAP, mean arterial pressure; MAPS, Mean Arterial Blood Pressure Treatment for
Acute Spinal Cord Injury; MASC, Minocycline in Acute Spinal Cord Injury; MPSS, methylprednisolone sodium succinate; N/A, not applicable; NASCIS,
National Acute Spinal Cord Injury Study; NMDA, N-methyl-D-aspartate receptor; PEG, polyethylene glycol; RISCIS, Riluzole in Spinal Cord Injury Study;
ROCK, Rho-associated, coiled-coil protein kinase; STASCIS, Surgical Timing in Acute Spinal Cord Injury Study; TNF, tumor necrosis factor.
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recruiting participants to assess the effects of cord perfusion
pressure (MAP minus intrathecal CSF pressure) on AIS scores
and neuropathic pain inventories. CAMPER will also provide
insight into the temporal profiles and prognostic value of CSF
biomarkers after SCI [34].

Magnesium is an N-methyl-D-aspartate receptor receptor
antagonist with antiexcitotoxic and antiapoptotic properties
successfully used in the neuroprotection of animals after trau-
matic brain injury, myocardial infarction, and SCI [53–56, 59].
Sustaining sufficiently high CSF levels of Mg requires an excipi-
ent such as polyethylene glycol (PEG). A phase I/II placebo-
controlled RCT (n = 40) of AC105 (Acorda Therapeutics, Ardsley,
NY, http://www.acorda.com) was started but subsequently
discontinued [34].

Basic fibroblast growth factor (bFGF) is a heparin-binding
protein involvedwithwoundhealing, angiogenesis, embryogen-
esis, and the in vitro maintenance of stem cell pluripotency. It
has also been shown to decrease oxyradical generation and
excitotoxic cell death in preclinical models of neurodegenerative
diseases and SCI [60]. A phase I/II RCT (n = 164) of an FGF analog,
SUN13837 (Asubio Pharmaceuticals, Edison, NJ, http://www.
asubio.co.jp), was discontinued early [34].

NEUROREGENERATION

The Glial Scar

CSPGs in the Glial Scar

Chondroitinase ABC (ChABC) is a bacterial enzyme shown to ef-
fectively degrade CSPGs, including NG2, promoting functional
gains in mouse models after intrathecal administration using
an osmotic minipump [61, 62]. Evidence also shows that coad-
ministration of ChABC with neural precursor cells enhances
transplant survival and remyelination of host axons [63, 64].
More recently, large-scale CSPG digestion by direct lentiviral
ChABC gene delivery into rat spinal cords demonstrated re-
duced cavitation volume and enhanced axon preservation.
Treated rats also displayed improved sensorimotor function
on behavioral and electrophysiological assessments [65].
ChABC is an exciting therapy for which the optimal modality
for delivery remains to be elucidated. Future avenues of re-
search may include exploration of human CNS-specific analogs
of ChABC anddevelopment of novel, safe, and effective delivery
techniques.

Anti-NOGO/RhoA-ROCK

Another promising field of study is the NOGO-A/RhoA-Rock
pathway. Neurite outgrowth inhibitor A (NOGO-A) is an integral
membrane protein in oligodendrocytes that binds NgR. NgR
phosphorylates the small GTPase RhoA, which subsequently
activates ROCK to inhibit neurite outgrowth and collapse the
growth cone [66]. Blocking the function of myelin protein
NOGO-A with NOGO-receptor antagonists, anti-NOGO-A anti-
bodies, or inhibition of downstream RhoA-ROCK has been
shown to enhance neurite growth and axonal regeneration in
animal studies [67–69]. A phase II clinical trial of a monoclonal
NOGO-A antibody is now under way in ALS, the results of which
may portend a trial in SCI [70]. Furthermore, VX-210 (Cethrin;
BioAxone BioSciences, Cambridge, MA, http://bioaxonebio.
com) is a Rho GTPase antagonist that demonstrated significant
motor improvement and no safety concerns in a phase I/IIa trial

(NCT00500812) in SCI [71]. A phase IIb trial, supported by
Vertex Pharmaceuticals (Boston, MA, http://www.vrtx.com),
is expected to begin in the near future to further quantify effi-
cacy and safety. The results of these trials will be important in
determining the course of investigation of these pathways as
therapeutic approaches for SCI.

CELL-BASED APPROACHES

Cell therapies using pluripotent sources are an exciting strategy
based on the grafts’ ability to be pro-oligodendrogliogenic [72,
73], pro-neuronogenic [74], immunomodulatory [75, 76], and/or
antigliotic [77]. Furthermore, transplanted cells may be capa-
ble of modifying the microenvironment and regenerating/
remyelinating damaged circuits. However, to successfully use
these strategies, we must optimize the cell source, differentia-
tion protocols, and graft survival.

Stem Cell Inc. (Newark, CA, http://www.stemcellsinc.com)
is conducting an international phase I/II clinical trial (NCT02163876)
of human CNS stem cell injections for cervical SCI that is
expected to conclude in 2017. Ongoing follow-up for a similar
phase I/II thoracic injury trial (NCT01321333) has demon-
strated patient improvement in multiple sensory modalities
withno safety concerns thus far [78].Neuralstem (Germantown,
MD, http://www.neuralstem.com) began a phase I safety trial
(NCT01772810) at the University of California San Diego of
NSI-566 neural stem cell transplants for chronic thoracic SCI in
2014, with expected completion in February 2016. These are
important clinical proof-of-concept steps in the path to wide-
spread translation of cell therapies.

Cell Sources

Endogenous neural stem cells may be mobilized from local res-
ervoirs, particularly the ependymal layer of the spinal cord cen-
tral canal [79]. Techniques are being developed to achieve this
using growth factor infusions [80], transplanted hydrogels [81],
or electrical fields [82]. In parallel, grafts of exogenous human
embryonic- and induced pluripotent stem (iPS)-derived cells
are being investigated. Human embryonic stem (ES) cells allow
consistent differentiation compared with human iPS cells but
present ethical challenges, possible karyotypic instability, and
are in limited supply [83, 84]. Additionally, the prospect of an
autologous pluripotent cell therapy with induced pluripotent
stem cell (iPSC) technology is enticing in SCI, where the immune
response is always at the forefront. Human iPSC technology of-
fers a highly translatable and potentially unlimited source of
pluripotent cells; however, logistical issues surrounding low
reprogramming efficiency and insertionmutagenesis exist with
viral derivation [85, 86]. Nonviral iPSC generation, such as using
the piggyBac transposon, affords an effective and reproducible
alternative [87, 88]. iPS technology continues to evolve as po-
tential early senescence and the variable yield of neural prog-
eny of iPS compared with ES cells are investigated [89, 90].
Furthermore, the effect of residual epigenetic memory in
DNA methylation and histone modification remains to be fully
understood [77, 91].

Several other important cell types are being investigated
for SCI, including mesenchymal stem cells (MSCs), olfac-
tory ensheathing cells (OECs), and bone marrow nucleated
cells (BMNCs). MSCs are multipotent stromal cells capable of
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differentiating along connective tissue lineages, allowing them to
play a key role in tissue repair [92]. They are also capable of po-
tently modulating the local and systemic immune response
[93–95]. In preclinical models, MSCs have been associated with
neural tissue sparing, increased levels of prosurvival trophic fac-
tors, andneovascularization [96, 97]. Several phase I and II trials of
autologous MSCs, transplanted into the parenchyma or intrathe-
cal space, are ongoing worldwide. Two phase III trials have also
been registered (NCT02481440, NCT01676441), with results
expected in the next 1–2 years [34]. BMNCs are being studied
for their similar supportive properties. They have been shown
to positivelymodulate themicroenvironment in SCI, possiblyme-
diated by the small fraction (0.01%–0.001%) ofMSCs in BMNCs. A
recent study of intraparenchymal and intravenous autologous
BMNC administration in children with chronic SCI showed no sig-
nificant adverse events [98]. Further preclinical and clinical work
is required to better understand the mechanism of action of
BMNCs.

OECs are glia that ensheathe olfactory neurons in a manner
similar to the way Schwann cells ensheathe peripheral neurons.
They support exposed olfactory cells in the nasal mucosa by
phagocytosing bacteria and debris, secreting neurotrophic fac-
tors, and facilitating axon regeneration after loss [99, 100]. OECs
are harvested from theolfactory bulb ormucosa and,when trans-
planted intothe injuredcord,promote remyelination,axonal regen-
eration, and improve behavioral outcomes [101]. At least 10 studies
ofpatientswithchronicSCI treatedwithOECshavebeendescribed
(cumulativen = 1,193). A recentmeta-analysis foundno significant
increase in adverse events after OEC transplant; however, higher-
quality studies are still required to define efficacy [102].

Remyelinating the Injured Cord

Oligodendrocytes are particularly vulnerable to traumatic injury,
leaving behind demyelinated, dysfunctional axons. Exogenous
intraparenchymal injections of neural precursor cells (NPCs) and
OPCshavebeenshowntoproducewell-differentiated,myelinating
oligodendrocytes in vivo. Moreover, rodents transplanted with
humanOPCsandNPCsweeksafterSCIhaveshownsignificant func-
tional recovery [103, 104]. However, differentiation protocols can
be complex and provide heterogeneous results. Evolving differen-
tiation protocols include Noggin (bone morphogenetic protein
inhibition), SB431542 (downstream Smad inhibition), and Sonic
hedgehog [105]. Protocol refinement andbettermolecular charac-
terizationof the cells beinggeneratedare critical advancementson
the path to definitive translation (Fig. 2).

Axon Regeneration

Humanneural stem cells have shownmature neuronal differen-
tiation in animal models with long-distance axonal growth and
integrated connectivity with the host CNS [106]. Host axons
have been shown to reciprocally connect with transplanted
neural stem cells, creating relay circuits that can potentially
bridge disrupted tracts [107, 108]. Emerging in vitro and in vivo
protocols for generating direct induced and transpluripotent
pathway mature neurons hold the potential to rebuild host cir-
cuits [109, 110]. However, mechanisms to direct axonal growth
and synapse development in functionally targeted areas are
lacking. This represents a critical barrier to recovery. Axon path-
finding strategies have predominantly focused on the role of
chemotactic and adhesive cues in guiding the neuronal growth

cone [111]. In vitro and in vivo studies demonstrating the im-
portance of cell adhesion molecules, including nerve growth
factor-inducible large external glycoprotein [112], neural cell
adhesionmolecule [112, 113], transient axonal glycoprotein-1
(TAG-1) [114], calcium-dependent cadherins [115], sema-
phorin 3A [23, 116], and netrin [117] have advanced our under-
standing of embryonic development of the CNS [111]. Further
discovery and exploitation of the underlying molecular path-
ways may yield potent adjunctive methods of generating func-
tional neuronal circuits through chemotactic signaling of
transplanted cells (Fig. 2).

Improving Cell Survival

Transplanted xenograft cells have poor survival rates in animal
SCImodels. Continued progress in the fieldwill require improve-
ments in cell survival by modifying cells, the injured cord
milieu, and the host animals. Growth factors (platelet-derived
growth factor, FGF2, and epidermal growth factor) and anti-
inflammatory agents (minocycline) havebeen shown to improve
cell survival but can be logistically challenging in animal models
(e.g., osmoticminipumps) [118, 119]. Alternate interventions to
increase growth factor levels or decrease the immune response
will be required to continue improving cell survival. One ap-
proach is the genetic modification of grafted cells to inducibly
express the necessary proteins. Fibroblasts and mesenchymal
stem cells have been successfully modified to secrete bFGF
[120], hepatocyte growth factor [121], NT3 [122, 123], brain-
derived neurotrophic factor (BDNF) [122, 124], and glial cell-
derived neurotrophic factor (GDNF) [125, 126] in vivo. Safe and
efficient methods of transducing human ES/iPS cells in a similar
fashion are being studied (Fig. 2).

Other strategies of interest are the development of bioengi-
neered cell transplant vehicles to gradually deliver signaling pro-
teins either spontaneously or after an exogenous stimulus. This
has been achieved with success with fibrin matrices [106],
hyaluronan/methylcellulose [127], and other bioengineered
materials. Growth factor-secreting hydrogels have been shown
to decrease cavity volume and improve behavioral measures
after injury. Furthermore, hydrogels can be used to mitigate
immunorejection of transplanted cells through encapsulation
to form a temporary physical barrier to the immune response
[128, 129].

An often overlooked but critical additional method is the
mobilizationof endogenous growth factors throughnoninvasive
interventions such as physical rehabilitation. While rehabilita-
tion is an integral component of the care provided to patients
with SCI, it is often overlooked in preclinical trials. Host animals
that undergo treadmill locomotor training postinjury show sig-
nificantly enhanced NPC survival mediated by insulin-like
growth factor-1 signaling [130]. This finding highlights the ne-
cessity of adjunctive therapies in SCI and underscores the impor-
tance of reciprocal knowledge exchange between the clinical
and preclinical worlds.

BIOMATERIALS

Drug-Eluting Hydrogels and Self-Assembling Peptides

Transplantable hydrogel polymers are an attractivemedium to fill
cavitation defects. Their porous construction allows cell migra-
tion and nutrient diffusion [131]. Hydrogels can also function
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as cell-delivery vehicles to improve graft survival and migration
[132, 133]. Furthermore, engineered needle-injectable hydrogels
can promote cell differentiation and form a barrier against the
immune response. Multiple biomaterial substrates have been
evaluated in SCI, including agarose [134, 135], collagen [136],
hyaluronan/methylcellulose [137], fibrin [138], and alginate
[139], all of which have shown promising results in supporting
regeneration. Further modification to integrate growth factors
[140] or immunomodulatory drugs [141] provides additional
high-yield combinatorial opportunities for exploration (Fig. 2).
This has been successfully performed for BDNF [142], NT-3
[143], and GDNF [139].

Synthetic self-assembling peptide (SAP) hydrogels are a
unique class of engineered proteins that can associate into
highly stable organized tissue scaffolds in situ [144, 145]. While
liquid at ambient temperature, when exposed to the mamma-
lian body, they begin to assemble into a biocompatible nano-
fiber structure similar to native extracellular matrix [146].
SAPs grafted into injured cords have demonstrated reduced
astrogliosis and cell death with enhanced axonal regeneration
[147]. Furthermore, cotransplants with neural stem cells have
been shown to promote injury repair and functional recovery
of the forelimbs in cervical SCI [148]. The technology behind
drug-eluting hydrogels and SAPs is rapidly evolving and we

foresee this becoming an increasingly important adjunct to
cell-based therapies moving forward.

FUTURE DIRECTIONS

The multifactorial nature of SCI and neural repair necessitates a
combinatorial approach if we are to translate experimental thera-
peutics into significant functional gains for patients. While acute
neuroprotective interventions are crucial tomitigate secondary in-
jury, therapeutic neuroregenerative approaches are required
to help the millions of patients living with chronic postinjury
disability. Pluripotent cell-based therapies will play a central
role but require further advancements in genetic engineering,
biomaterials, and a deeper understanding of SCI at amolecular
level. Furthermore, the development of less-toxic immuno-
suppressive drugs or consistent methods of generating autol-
ogous iPS cells is an important milestone on the path to
translation. Careful targeting of these treatment strategies
to individual subsets of patients is an important avenue of fur-
ther investigation requiring a better understanding of injury
heterogeneity. In defining these groups, a critical need exists
for validated biomarkers of injury severity and recovery trajec-
tory through magnetic resonance imaging [149] and serum/
CSF biochemistry [150].

Figure 2. Schematic highlighting promising primary and adjunctive neuroregenerative strategies in spinal cord injury. Transplanted
auto/allogenic cells can be differentiated to (1) oligodendrocytes to remyelinate denuded axons or (2) neurons for restoration of func-
tional neural circuits. (3) Promoting this is likely to requiremolecular signaling techniques for axon guidance. (4) Enhancement of synaptic
plasticity with formation of new connections may be a key mechanism of recovery. (5) Another important approach is induction of en-
dogenous neural stem cells, particularly from the central canal. (6) The disruption of the structural architecture of the cord can be over-
come by cotransplants of biomaterials that can form a framework for growth. (7) The glial scar barrier can be degraded by enzymes such as
chondroitinase ABC. (8) Finally, transplanted cells can be genetically modified to secrete prosurvival, promigration, or other important
factors.
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Successful future therapies will require these and other syn-
ergistic approaches to address the persistent barriers to regener-
ation, including the glial scar, the loss of structural framework,
and immunorejection. Ongoing clinical trials underscore the ex-
citement and progresswe havemade in investigating therapeutic
approaches to SCI and highlight the importance of thework being
done by thousands of scientists in regenerative medicine.
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